mpak: Distribution and Execution Infrastructure for MCP
Server Bundles

Mathew Goldsborough
mat@nimblebrain.ai
www.mpak.dev

Abstract. The Model Context Protocol (MCP) ecosystem has discovery
and packaging specifications, but lacks distribution and execution infra-
structure. We present mpak: a GitHub Action for building bundles, a
registry for artifact resolution, and a CLI for fetching and running servers.
mpak distributes inert bundles (no code executes at install time) with built-
in configuration schemas and OIDC-based provenance.

1. Introduction

The Model Context Protocol (MCP) [1] defines how Al assistants interact with external
tools. An MCP server exposes capabilities that Al systems invoke over stdio or HTTP. The
ecosystem has matured rapidly.

o MCP Specification [1]: Defines the protocol for tool invocation

o MCP Registry [2]: Provides discovery (“what servers exist”)

« MCPB Specification [3]: Defines the bundle format for packaging servers
However, a gap remains between “a packaging format exists” and “developers can easily
build, distribute, and run packaged servers.” The MCPB specification defines structure but
provides no tooling. Publishers must manually construct bundles, host them on GitHub
Releases, and communicate URLs out-of-band.

1.1 The Package Manager Mismatch

Traditional package managers appear to solve distribution, but they are designed for a
fundamentally different use case:

Characteristic | Libraries (npm/pip/uv) | MCP Servers
Integration Imported into code Run as subprocess
Dependencies Shared tree, resolved Vendored, isolated
Execution Called as functions Spawned as process
Platform Often agnostic May need native builds
Configuration Via code or env vars API keys, settings
Lifecycle Part of app deploy Independent service

Table 1: Libraries vs MCP servers: fundamental differences in usage patterns

When a developer runs npm install some-mcp-server, they get source code in
node modules/ that they must figure out how to execute. When they run pip install
some-mcp-server, they get a package in their Python environment that may conflict with
their application’s dependencies.

MCP servers are not libraries. They are standalone services. The mental model should be
closer to Docker images or binary distributions than to npm packages.

1.2 What MCPB Provides (and Lacks)
The MCPB format addresses the packaging problem well:

e Vendored dependencies: All dependencies bundled in deps/ or node _modules/
e Manifest-driven execution: mcp config specifies command and arguments
e Platform tagging: Bundles can be tagged with OS and architecture
e User configuration: user config schema for API keys and settings
But MCPB is a format specification, not an ecosystem. It lacks:

o Build tooling: No standard CI/CD integration for producing bundles

e Distribution infrastructure: No registry for hosting and resolving bundles
e Execution tooling: No CLI for fetching, caching, and running bundles

e Configuration management: No mechanism for storing user credentials

1.3 mpak’s Contribution

mpak, developed by NimbleBrain [4], provides the missing infrastructure layer:

1) mcpb-pack [5] (GitHub Action): Automates bundle creation in CI/CD, including
dependency vendoring and multi-platform builds.

2) mpak.dev [4] (Registry): Indexes bundle metadata, resolves platform-specific arti-
facts, and provides download URLs. Complements the MCP Registry (discovery)
with distribution.

3) mpak CLI [6]: Fetches bundles, manages local cache, handles user configuration,
and executes servers with proper environment setup.

Together, these components turn MCPB from a specification into a usable ecosystem.

2. Background

2.1 The MCP Ecosystem

The Model Context Protocol standardizes how Al assistants invoke external tools. An MCP
server exposes:

W

o Tools: Functions the AI can call (e.g., “query_ database”, “send__email”)

o Resources: Data the Al can read (e.g., file contents, API responses)

e Prompts: Templated interactions the Al can use
Servers communicate over stdio (for local execution) or HTTP (for remote deployment).
The protocol handles capability negotiation, request/response framing, and error handling.

2.2 The MCP Registry

The official MCP Registry [2] provides discovery. Publishers submit server metadata
including name, description, repository URL, and declared capabilities (which tools and
resources the server exposes). The registry aggregates this into a searchable catalog.

4

The registry answers “what servers exist?” but does not answer “how do I install and
run them?” A registry entry links to a source repository, not to a downloadable artifact.
Installation instructions vary by server: some require npm install -g, others need pip
install into a virtual environment, and some expect users to clone the repository and run
build scripts. This heterogeneity creates friction, particularly for users unfamiliar with the

server’s underlying runtime.

2.3 MCPB Bundle Format
MCPB [3] defines a portable package format:

bundle.mcpb (ZIP archive)
— manifest.json

F— src/
— deps/

L— node modules/

The manifest is the core of the format. It specifies how to execute the server and what
configuration it requires:

"name": "@org/postgres",
"version": "1.2.0",
"mcp_config": {
"command": "python",
"args": ["-m", "postgres.server"],
"env": { "PYTHONPATH": "deps/" }
I

"user config": {
"connection string": {
"type": "string",
"description": "PostgreSQL connection URL",
"sensitive": true,
"required": true

The mcp _config section tells the runtime exactly how to spawn the server. The
user _config section declares what credentials or settings the server needs, with type
information and sensitivity flags that allow tooling to handle secrets appropriately.

MCPB solves the “what should a bundle contain?” question. It does not solve “how do I
build one?” or “where do I get one?”

2.4 Why Not Use npm/pip/uv?

One might ask: if an MCP server is written in Python, why not publish it to PyPI? These
tools are designed for libraries that integrate into application code, not standalone
servers that run as subprocesses.

Isolation. Package managers create shared dependency trees. If mcp-server-a requires
requests==2.28 and mcp-server-b requires requests==2.31, they conflict. Using pip for
MCP servers means managing separate virtual environments per server. MCPB bundles
vendor dependencies per-server, avoiding conflicts entirely without environment manage-
ment: mpak run @org/postgres

Execution. pip install mcp-server gives you a package. How do you run it? The user
must discover the entry point, find the correct interpreter, construct the command, set up
environment variables, and handle platform-specific dependencies like native extensions.
MCPB bundles include mcp_config that specifies exactly how to execute, and can include
pre-built platform-specific binaries.

Configuration. npm, pip, and uv have no concept of “this package needs an API key.”
MCPB’s user _config schema declares required configuration with types and sensitivity
flags, enabling tooling to prompt for credentials and store them securely.

Trust. Installing via pip can execute arbitrary code (setup.py runs during installation).
MCPB bundles are inert ZIP files. No code executes until you explicitly run the server,
and even then, the user makes the explicit choice to start a named server.

3. System Design

3.1 Architecture Overview

mpak consists of three components that address different phases of the bundle lifecycle:

BUILD PHASE: mcpb-pack GitHub Action
1) Vendor dependencies (Python: uv pip install; Node: npm install)
2) Create bundle (mcpb pack)
3) Upload to GitHub Releases
4) Announce to registry (OIDC-authenticated)
i}
DISTRIBUTION PHASE: mpak.dev Registry
Index metadata, track multi-platform artifacts, resolve downloads, verify provenance

{

EXECUTION PHASE: mpak CLI
Search, download, cache, configure, execute

3.2 End-to-End Example

To illustrate the complete workflow, consider a developer publishing an MCP server and a
user consuming it:

Publisher (Alice):

Alice creates an MCP server with a pyproject.toml
She adds a GitHub Actions workflow:
.github/workflows/release.yml
on:
release:
types: [published]
permissions:
contents: write
id-token: write
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: NimbleBrainInc/mcpb-pack@v2

When Alice creates a GitHub release (e.g., v1.0.0), the action automatically builds the
bundle, uploads it to the release, and announces it to the registry.

Consumer (Bob):

Bob searches for Alice's server
$ mpak search weather
@alice/weather v1.0.0 "Weather data via OpenWeatherMap"

Bob runs it (first run downloads and caches)
$ mpak run @alice/weather

=> Pulling @alice/weather@l.0.o0...

=> Missing required config: api_key

7 Enter api key: *iiiokodk

=> Cached at ~/.mpak/cache/alice-weather/1.0.0/
[Server starts]

Subsequent runs use cached bundle and stored config
$ mpak run @alice/weather
[Server starts immediately]

No manual dependency installation. No virtual environment setup. No figuring out how to
execute. Bob runs Alice’s server with a single command.

3.3 Build Phase: mcpb-pack

The mcpb-pack GitHub Action automates bundle creation:

name: Release
on:
release:
types: [published]

permissions:
contents: write
id-token: write

jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: NimbleBrainInc/mcpb-pack@v2

The action performs runtime detection, dependency vendoring, bundle creation, release
upload, and registry announcement via OIDC.

3.4 Multi- Platform Distribution

MCP servers written in pure Python or JavaScript can run on any platform with the
appropriate interpreter. However, servers that depend on native extensions (NumPy,
cryptography, database drivers with C bindings) require platform-specific builds. A bundle
compiled on Linux x64 with native dependencies will not run on macOS ARMG64.

This is analogous to the challenge Docker faced with multi-architecture images. Docker’s
solution was the manifest list (later standardized as OCI image index [7]): a single
logical image that references multiple platform-specific variants. When a user pulls
postgres:latest, Docker automatically selects the variant matching their platform.

mpak adopts the same pattern for MCPB bundles.

3.4.1 Index Manifest Format

Each package version can have an index manifest that describes all available platform

variants:
{
"index version": "1",
"mimeType": "application/vnd.mcpb.index+json",
“name": "@org/server",
"version": "1.2.0",
"bundles": [
{
"mimeType": "application/vnd.mcpb.bundle+zip",
"digest": "sha256:alb2c3...",
"size": 19456000,
"platform”: { "os": "linux", "arch": "x64" },
"urls": ["https://github.com/.../linux-x64.mcpb"]
}
{
"mimeType": "application/vnd.mcpb.bundle+zip",
"digest": "sha256:d4e5f6...",
"size": 18892000,
"platform": { "os": "darwin", "arch": "arm64" },
"urls": ["https://github.com/.../darwin-arm64.mcpb"]
}
]
}

The mimeType field distinguishes index manifests (application/vnd.mcpb.index+json)
from actual bundles (application/vnd.mcpb.bundle+zip). The digest provides content-
addressable integrity verification. Each bundle entry includes its platform tuple and one or
more download URLs.

3.4.2 Parallel Build Convergence

Multi-platform builds use GitHub Actions’ matrix strategy to run builds in parallel across
different runners:

jobs:
build:
strategy:
matrix:
include:
- 0S: ubuntu-latest
arch: x64

- 0S: ubuntu-24.04-arm
arch: armé64
- 0S: macos-latest
arch: armé64
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v4
- uses: NimbleBrainInc/mcpb-pack@v2

Each runner independently builds, uploads, and announces its artifact. The registry’s
announce endpoint is idempotent: if multiple runners attempt to announce the same
version, the first creates the version record, and subsequent announcements add their
artifacts to it. A 409 Conflict response (artifact already exists) is treated as success.

This design enables embarrassingly parallel multi-platform builds with no coordination
required between runners. A three-platform build completes in the time of the slowest
single build, not the sum.

Runner Platform Artifacts Time
ubuntu-latest linux-x64 server-linux-x64.mcpb 2 min
ubuntu-24.04-arm | linux-arm64 server-linux-arm64.mcpb 2 min
macos-latest darwin-arm64 | server-darwin-arm64.mcpb | 3 min

Table 2: Parallel matrix builds converge on a single version with multiple artifacts

3.4.3 Platform Resolution

When the CLI requests a bundle, it sends the client’s platform (os and arch) as query
parameters. The registry performs resolution:

1) Exact match: If an artifact exists for the requested platform (e.g., darwin-armé4),
return it.
2) Universal fallback: If no exact match exists but a universal bundle (any-any) is

available, return it. Universal bundles contain no native dependencies.

3) Incompatible: If neither exact nor universal exists, return an error listing available
platforms.

$ mpak pull @org/server
=> Fetching @org/server (latest)...
Platform: darwin-armé64
Version: 1.2.0
Artifact: darwin-arm64
Size: 18.02 MB
=> Downloading. ..

This resolution happens server-side, so the CLI never downloads incompatible bundles.
Users on unsupported platforms receive clear guidance about which platforms are available.

3.5 Distribution Phase: Registry

The registry (mpak.dev) complements the MCP Registry:

MCP Registry mpak Registry

Lists servers Hosts bundle metadata

Links to source repos | Links to download URLs

Discovery Distribution

Source-oriented Artifact-oriented

Table 3: Complementary roles of MCP Registry and mpak registry

The registry indexes packages, versions, artifacts, and provenance. Importantly, mpak does
not store artifacts. Bundles remain on GitHub Releases. The registry indexes metadata
and redirects downloads to the source. Each version can have multiple artifacts (one per
supported platform), and the registry tracks them all under a unified version identifier.

3.6 Execution Phase: CLI
The mpak CLI provides the user-facing interface:

$ mpak search postgres

Found 3 bundle(s):
@nimblebraininc/postgres v1.2.0
@modelcontextprotocol/postgres v0.9.1

$ mpak run @nimblebraininc/postgres

=> Pulling @nimblebraininc/postgres@l.2.0...

=> Cached at ~/.mpak/cache/nimblebraininc-postgres/
[Server starts, ready for MCP connections]

10

The run command handles resolve, download, extract, configure, and execute.

3.7 Configuration Management

MCP servers often require credentials. MCPB’s user config schema declares these with
types, descriptions, and sensitivity flags. The CLI provides commands for managing server
configuration:

$ mpak config set @scope/server api_ key=sk-xxx
$ mpak config get @scope/server
api_key: sk-x***
$ mpak run @scope/server # config used automatically

Configuration is stored in ~/.mpak/config.json, scoped by package name. Values marked
as sensitive in the manifest are stored in plaintext (the file should be user-readable only)
but masked when displayed. At execution time, the CLI resolves each required configuration
key using a priority chain: process environment variables take precedence, then stored
configuration, then manifest defaults. Environment variables are matched by key name
directly (e.g., api_key in the manifest is resolved from $api_key). If a required key cannot
be resolved, the CLI prompts interactively before starting the server.

3.8 Version Management

By default, mpak run @scope/server resolves to the latest version. Users can pin to specific

versions:
$ mpak run @scope/server@l.2.0 # exact version
$ mpak run @scope/server@l.2 # latest patch in 1.2.x
$ mpak list # show cached bundles

The registry tracks all published versions, and the CLI caches downloaded bundles
indefinitely. Cached bundles are never automatically updated; users control upgrades by
specifying versions explicitly or running mpak pull @scope/server to fetch the latest.
Immutability. Once a version is announced, it cannot be replaced or deleted by the
publisher. This prevents “rug pull” attacks where a trusted version is silently replaced with
malicious code. Version removal requires registry administrator intervention and is reserved
for legal or security incidents.

11

4. OIDC-Based Provenance

4.1 The Credential Problem

Traditional package registries require publishers to authenticate with long-lived credentials:
API tokens stored in CI secrets, environment variables, or developer machines. This creates
multiple attack vectors.

Credential theft has affected major registries. Attackers who obtain npm tokens can publish
malicious versions of popular packages, as seen in the event-stream incident where a
compromised maintainer token led to cryptocurrency-stealing code reaching millions of
downloads. Similar attacks have targeted PyPI and RubyGems. Even without external
attackers, credentials stored in CI systems can leak through log exposure, misconfigured
secrets, or insider access.

Beyond security, credentials impose operational burden: tokens must be provisioned per-
repository, rotated periodically, and revoked when team members leave. For an ecosystem
expecting hundreds of MCP server publishers, this overhead is significant.

4.2 Workload Identity

GitHub Actions provides OIDC tokens [8] that cryptographically assert workflow identity.
A token contains claims including repository, owner, commit SHA, workflow, and ref. The
token is signed by GitHub and verifiable against GitHub’s public keys.

4.3 Announce Protocol

When mcpb-pack announces a bundle:

1) Request OIDC token with audience https://www.mpak.dev
2) POST to /v1/bundles/announce with token and metadata

3) Registry validates signature against GitHub’s JWKS

4) Extract claims: repository, commit, workflow

5) Verify namespace: @rg/name must come from org’s repository
6) Record provenance binding

No credentials are exchanged. Publishers only need:

permissions:
id-token: write

4.4 Security Properties

e No credentials to steal. There are no API keys or tokens. An attacker cannot

publish without controlling the source repository.
e Provenance is cryptographic. The binding between bundle and source is signed

by GitHub.

12

« Namespace ownership. Packages scoped to @org/* can only be published from

workflows running in that GitHub organization.
e Immutable versions. Once announced, a version cannot be replaced.
« Namespace governance. Package scope ownership is delegated to the upstream

OIDC provider. Whoever controls a GitHub organization controls the correspond-
ing @org/* namespace. Disputes over namespace ownership are resolved through

GitHub’s existing organization management, not through the mpak registry.

4.5 Threat Model

mpak’s security model addresses specific threats while explicitly excluding others:

In Scope:

Threat

Mitigation

Credential theft

No credentials exist; OIDC tokens are ephemeral and scoped

Namespace hijacking

Package scopes are bound to GitHub organization ownership

Version tampering

Immutable versions; registry rejects re-announcement

Man-in-the-middle

HTTPS transport; digest verification on download

Build provenance forgery

OIDC tokens are cryptographically signed by GitHub

Out of Scope:

Threat

Rationale

Compromised publisher

If an attacker controls the source repository, they can publish
legitimately-signed malicious bundles. This is inherent to any
system where publishers have autonomy. Mitigation requires
external code review and security scanning (see §9).

Runtime sandbox escape

mpak provides process-level isolation only. Malicious servers
have full user permissions. Users requiring stronger isolation
should use containerized deployment.

Registry compromise

If the registry database is compromised, attackers could
redirect downloads to malicious URLs. Mitigation: digest
verification ensures content integrity even if URLs are tam-
pered.

Denial of service

Registry availability is a single point of failure. Mitigation:
cached bundles continue to work offline.

Trust Boundaries. Users implicitly trust: (1) GitHub’s OIDC infrastructure, (2) the
mpak registry operator, (3) bundle publishers within their chosen scopes. The system

minimizes trust surface but cannot eliminate it.

13

5. Comparison with Alternatives

5.1 vs. npm/pip/uv

Aspect npm/pip/uv mpak
Distribution unit | Source package Portable bundle
Dependencies Resolved at install Pre-vendored
Execution User figures it out mpak run
Isolation Shared environment | Per-bundle
Configuration None user config
Install-time code | Yes No (inert)

Table 6: Comparison of traditional package managers vs mpak

Traditional package managers remain appropriate when MCP servers are tightly coupled
to application code, when the development team already manages virtual environments, or
when the server has no external dependencies that might conflict. mpak is preferable when
servers are deployed independently, when multiple servers with conflicting dependencies
must coexist, or when non-developers need to run servers without understanding the
underlying runtime.

Startup Performance. The practical difference is most apparent in cold-start scenarios.
Traditional package managers must resolve dependencies, download packages, and poten-
tially compile native extensions before execution begins. In testing, pip install followed
by server startup frequently exceeded 60 seconds for servers with complex dependency trees.
npm-based servers showed similar latency when node modules/ was not pre-populated.

MCPB bundles eliminate this variability. With dependencies pre-vendored, startup time
is bounded by network transfer speed (for uncached bundles) or disk I/O (for cached
bundles). A typical 20MB bundle downloads in under 2 seconds on broadband connections;
subsequent runs from cache start in milliseconds.

Scenario npm/pip/uv | mpak

Cold start (no cache) | 30-90 seconds | 2-5 seconds

Warm start (cached) | 5-15 seconds | <100 ms

Table 7: Representative startup times. npm/pip times include dependency resolution and
installation; mpak times include download (cold) or cache lookup (warm).

14

5.2 vs. Docker

Docker provides execution isolation but is heavyweight:

Aspect Docker mpak

Isolation Full container Process-level
Overhead Container runtime | Direct execution
Image size Hundreds of MB Megabytes

Startup time Seconds Milliseconds

Runtime req. Docker daemon None

Multi-platform | OCI image index | MCPB index manifest

Table 8: Comparison of Docker containers vs mpak bundles

Docker is preferable when servers require system-level isolation, when deploying to con-
tainer orchestration platforms, or when the runtime environment itself must be controlled.
mpak is preferable for local development, for environments where Docker is unavailable or
impractical, and when startup latency matters. mpak bundles occupy a middle ground:
lighter than containers, more portable than source.

To quantify the size difference, we measured five Python-based MCP servers published as
both MCPB bundles and Docker images:

Server | MCPB Bundle | Docker Image | Ratio
echo 19.5 MB 88.6 MB 4.5%
abstract | 20.2 MB 88.6 MB 4.4%
ipinfo 20.2 MB 85.7 MB 4.2
pdfco 20.2 MB 88.7 MB 4.4x
finnhub | 19.5 MB 85.9 MB 4.4%

Table 9: Size comparison: MCPB bundles vs Docker images for Python MCP servers

Note: Docker images include a complete OS layer and language runtime, while MCPB
bundles rely on the host’s existing runtime. This comparison reflects total artifact size, not
equivalent isolation guarantees.

On average, MCPB bundles are 4.4 x smaller than equivalent Docker images. This difference
stems from Docker’s inclusion of a full OS layer (Alpine Linux base image, system libraries,
Python runtime) while MCPB bundles contain only application code and vendored depen-
dencies, relying on the host’s existing runtime.

15

For Kubernetes deployments, MCPB bundles can run inside lightweight runtime containers.
NimbleTools [9], an open-source MCP runtime, provides base images that include only the
language runtime:

Runtime Image | Size

mcpb-python 41 MB
mcpb-node 54 MB
mcpb-binary 32 MB

Table 10: NimbleTools runtime images for Kubernetes deployment

This separation of runtime from application yields significant savings at scale. Deploying
five Python MCP servers traditionally requires five Docker images totaling 445 MB. With
NimbleTools, the same deployment uses one shared runtime image (41 MB) plus five
bundles (100 MB), totaling 141 MB, a 3.2x reduction.

5.3 vs. MCP Registry Alone

The MCP Registry answers “what servers exist?” but leaves installation to the user. A
registry entry might link to a GitHub repository with a README explaining how to clone,
install dependencies, and run the server. This works for developers comfortable with the
underlying runtime, but creates friction for end users.

mpak complements the MCP Registry by providing the distribution layer. A future
integration could allow the MCP Registry to link directly to mpak bundles, giving users
a one-command installation path while preserving the registry’s role as the canonical
discovery mechanism.

6. Implementation

6.1 mepb-pack Action

The mcpb-pack action is implemented as a composite GitHub Action. Composite actions
were chosen over JavaScript or Docker actions because they run directly in the workflow’s
environment, avoiding container overhead and simplifying access to the repository’s files.

The action auto-detects the runtime by examining package.json (Node) or
pyproject.toml (Python), then invokes the appropriate dependency installer. For Python,
it uses uv for fast, reproducible installs into a deps/ directory. For Node, it runs npm
install --production to populate node modules/. After vendoring, the action invokes
mcpb pack to create the bundle, uploads it as a release asset via the GitHub API, and
announces to the registry using the workflow’s OIDC token.

16

6.2 Registry Service

The registry is a Fastify server backed by PostgreSQL. Fastify was selected for its low
overhead and schema-based validation. The database stores packages, versions, and arti-
facts as normalized tables with foreign key relationships.

OIDC verification uses the jose library [10] to validate JWT signatures against GitHub’s
published JWKS endpoint. The registry caches the JWKS with a short TTL to handle key
rotation. Full-text search uses PostgreSQL’s native tsvector indexing, avoiding external
search infrastructure while providing adequate performance for the expected catalog size.

6.3 CLI

The CLI is a TypeScript application compiled to a single JavaScript file with minimal
dependencies: only Node.js and commander for argument parsing. This minimizes instal-
lation friction and avoids dependency conflicts on user machines.

The CLI stores bundles in ~/.mpak/cache/ with a directory per package-version. Config-
uration is stored in ~/.mpak/config.json, with sensitive values kept in plaintext but
masked on display. The execution path spawns the server as a child process with stdio:
"inherit', allowing the server’s stdout/stderr to flow directly to the terminal.

7. Related Work

7.1 Package Registries

npm [11] pioneered the JavaScript ecosystem but uses credential-based publishing. PyPI
introduced Trusted Publishers [12] for OIDC-based publishing, which influenced mpak’s
design. crates.io serves Rust with strong security practices.

7.2 Supply Chain Security

SLSA [13] (Supply-chain Levels for Software Artifacts) defines a framework for supply
chain integrity. Level 1 requires documented build processes; Level 2 requires hosted builds
with authenticated provenance; Level 3 requires non-forgeable provenance from a hardened
build platform. mpak achieves Level 3: builds run on GitHub-hosted runners (hardened
platform), provenance is cryptographically signed by GitHub’s OIDC infrastructure (non-
forgeable), and the registry verifies this signature before accepting announcements.

Sigstore [14] provides keyless signing using similar OIDC principles. Where Sigstore
focuses on signing arbitrary artifacts with transparency logs, mpak’s approach is narrower:
it uses GitHub’s OIDC tokens specifically for registry authentication, binding package
namespaces to repository ownership without requiring publishers to understand signing
infrastructure.

17

8. Limitations

mpak makes deliberate tradeoffs that may not suit all use cases:

Process-level isolation only. Unlike Docker, mpak provides no filesystem or network
isolation. A malicious server has full access to the user’s system. This is acceptable for
trusted publishers but insufficient for running untrusted code. Organizations with strict
security requirements should prefer containerized deployment.

GitHub dependency. The OIDC-based provenance model requires GitHub Actions.
Publishers using GitLab, Bitbucket, or self-hosted CI cannot currently publish to the
registry. Future work may extend OIDC support to additional identity providers.

Runtime requirements. MCPB bundles are not fully self-contained. Python bundles
require a compatible Python interpreter on the host; Node bundles require Node.js. Unlike
Docker images, which include the complete runtime, mpak assumes the execution environ-
ment provides the language runtime. This is typically acceptable for developer machines
but complicates deployment to minimal environments.

No transitive dependency resolution. Each bundle vendors its own dependencies
independently. If a user runs five servers that all depend on requests, they have five
copies. This trades disk space for isolation, but may be wasteful for resource-constrained
environments.

9. Future Work

e Registry Federation. Organizations may want private registries. Future work

includes federation protocols.
e Bundle Signing. Currently, provenance is established at announce time. Future

work could sign bundles for offline verification.
e Dependency Scanning. Future work could scan vendored dependencies against

vulnerability databases.
e Security Scanning. The mcpb-pack action could integrate static analysis tools

(Semgrep, Bandit, npm audit) to block publication when critical vulnerabilities are
detected. The registry could perform post-hoc scanning of announced bundles and

flag or quarantine packages with known CVEs.
e MCP Registry Integration. The MCP Registry could link to mpak download

URLs for servers that have bundles.
e WebAssembly Bundles. WASM could enable truly cross-platform bundles

without runtime dependencies, eliminating the need for host Python or Node.js

interpreters.
e« Offline and Air-gapped Deployment. Users can already sideload bundles by

manually placing .mcpb files in the cache directory. Future work includes a --
registry flag to redirect resolution to internal mirrors, enabling fully air-gapped
deployments with synchronized registry endpoints.

18

10. Conclusion

The MCP ecosystem has a protocol, a discovery registry, and a packaging format. What
it lacked was the tooling to build, distribute, and execute bundles. Traditional package
managers are designed for libraries, not standalone servers.

mpak fills this gap with three components:

1) mcpb-pack: Turns “there’s a packaging format” into “here’s how to build packages
in CI”
2) mpak.dev: Turns “host bundles somewhere” into “query for platform-appropriate

artifacts”
3) mpak CLI: Turns “download and figure out execution” into mpak run @scope/
server

The system uses OIDC attestation to provide strong provenance without credential man-
agement. It complements rather than replaces the MCP Registry, providing the distribution
and execution layer that the ecosystem needs.

mpak is available at https://www.mpak.dev. The CLI is @nimblebraininc/mpak on npm.
The build action is NimbleBrainInc/mcpb-pack.

19

https://www.mpak.dev

References

[1] Anthropic, “Model Context Protocol Specification”, https://modelcontextprotocol.io, 2024.

[2] Model Context Protocol, “MCP Registry”, https://github.com/modelcontextprotocol /registry,
2025.

[3] Model Context Protocol, “MCPB: MCP Bundle Format Specification”, https://github.com/mo
delcontextprotocol/mepb, 2025.

[4] NimbleBrain Inc., “mpak: Distribution and Execution Infrastructure for MCP Server Bundles”,
https://www.mpak.dev, 2025.

[5] NimbleBrain Inc., “mcpb-pack GitHub Action”, https://github.com/NimbleBrainInc/mcpb-
pack, 2025.

[6] NimbleBrain Inc., “mpak CLI”, https://github.com/NimbleBrainInc/mpak-cli, 2025.

[7] Open Container Initiative, “OCI Image Index Specification”, https://github.com/
opencontainers/image-spec/blob/main/image-index.md, 2017.

[8] GitHub, “About security hardening with OpenID Connect”, https://docs.github.
com/en/actions/deployment /security-hardening-your-deployments/about-security-hardening-with-

openid-connect, 2021.

[9] NimbleBrain Inc., “NimbleTools: Open-source MCP Runtime for Kubernetes”, https://github.
com/NimbleBrainInc/nimbletools-core, 2025.

[10] panva, “jose: JavaScript module for JSON Object Signing and Encryption”, https://github.
com/panva/jose, 2018-2025.

[11] npm, Inc., “npm Registry”, https://www.npmjs.com, 2010.

[12] Python Software Foundation, “Trusted Publishers”, https://docs.pypi.org/trusted-publishers/,
2023.

[13] OpenSSF, “SLSA: Supply-chain Levels for Software Artifacts”, https://slsa.dev, 2021.

[14] Sigstore, “Sigstore: A new standard for signing, verifying and protecting software”, https://
www.sigstore.dev, 2021.

20

https://modelcontextprotocol.io
https://github.com/modelcontextprotocol/registry
https://github.com/modelcontextprotocol/mcpb
https://github.com/modelcontextprotocol/mcpb
https://www.mpak.dev
https://github.com/NimbleBrainInc/mcpb-pack
https://github.com/NimbleBrainInc/mcpb-pack
https://github.com/NimbleBrainInc/mpak-cli
https://github.com/opencontainers/image-spec/blob/main/image-index.md
https://github.com/opencontainers/image-spec/blob/main/image-index.md
https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/about-security-hardening-with-openid-connect
https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/about-security-hardening-with-openid-connect
https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/about-security-hardening-with-openid-connect
https://github.com/NimbleBrainInc/nimbletools-core
https://github.com/NimbleBrainInc/nimbletools-core
https://github.com/panva/jose
https://github.com/panva/jose
https://www.npmjs.com
https://docs.pypi.org/trusted-publishers/
https://slsa.dev
https://www.sigstore.dev
https://www.sigstore.dev

	1. Introduction
	1.1. The Package Manager Mismatch
	1.2. What MCPB Provides (and Lacks)
	1.3. mpak's Contribution

	2. Background
	2.1. The MCP Ecosystem
	2.2. The MCP Registry
	2.3. MCPB Bundle Format
	2.4. Why Not Use npm/pip/uv?

	3. System Design
	3.1. Architecture Overview
	3.2. End-to-End Example
	3.3. Build Phase: mcpb-pack
	3.4. Multi-Platform Distribution
	3.4.1. Index Manifest Format
	3.4.2. Parallel Build Convergence
	3.4.3. Platform Resolution

	3.5. Distribution Phase: Registry
	3.6. Execution Phase: CLI
	3.7. Configuration Management
	3.8. Version Management

	4. OIDC-Based Provenance
	4.1. The Credential Problem
	4.2. Workload Identity
	4.3. Announce Protocol
	4.4. Security Properties
	4.5. Threat Model

	5. Comparison with Alternatives
	5.1. vs. npm/pip/uv
	5.2. vs. Docker
	5.3. vs. MCP Registry Alone

	6. Implementation
	6.1. mcpb-pack Action
	6.2. Registry Service
	6.3. CLI

	7. Related Work
	7.1. Package Registries
	7.2. Supply Chain Security

	8. Limitations
	9. Future Work
	10. Conclusion

